WHITHER PEDIATRIC RESEARCH AND PREDISPOSITION GENETIC TESTING?

Andrea Farkas Patenaude¹, Karine Sénécal², Denise Avard³

Research in which children undergo genetic testing for predisposition to adult-onset diseases or disorders can lead to a better understanding of these conditions. It can possibly also help encourage early detection and the development of clinical and preventive interventions for those found to be at increased hereditary risk. Increasingly, predisposition testing is becoming part of pediatric genetic research. However, the paucity of normative texts about the conduct of pediatric research using predisposition genetic testing generates complex legal and ethical issues. Drawing on the current texts that govern predisposition genetic testing in research and the norms of pediatric research, we outline points of consensus and divergence as well as recommendations regarding predisposition genetic testing in pediatric research.

For few single gene diseases¹, predisposition genetic tests offer clear predictions because they offer information about whether an asymptomatic individual is a carrier of the mutation which, in 100% of cases, causes a specific disease that will manifest during the individual’s life. For most conditions, however, predisposition genetic tests identify an increased susceptibility to a particular disease or, often, to several diseases which form a hereditary syndrome.

In this last case, genetic susceptibility increases the risk of developing the disease(s) often at a younger than usual age of onset². The manifestation of the disease may depend on the interaction of several genes or on environmental factors³. In addition to clinical practice uses, researchers are developing research protocols for genetic testing. Clinical genetic information may be distinguished from research results; research results are likely to be much more uncertain, ambiguous, and may involve tests which have not been clinically validated.

Why an ethical concern about predisposition genetic testing research in pediatrics? Genetics is a rapidly developing area of
medicine and, undoubtedly, children will be recruited for research for a variety of reasons: they may come from families with a history of adult-onset diseases who are likely to be considered participants in predisposition genetic testing research; a growing number of diseases are known to have a genetic component; and accumulating evidence demonstrates that risk factors during childhood contribute to several late onset disorders. There are some guidelines about the inclusion of children in research but very few refer specifically to genetic research.

While individual results are not given in most research environments, the availability of predisposition genetic test results from genetic research can be problematic for a variety of reasons. The relationship between the research finding and the risk of developing a disease may be unclear. As mentioned above, research testing may not have clinical level accuracy. The result may identify either mutations in asymptomatic individuals or a susceptibility to an illness for which there is no known treatment (curative or preventative). Furthermore, if researchers intend on providing individual results to participants, there is an expectation that, to understand the implications of the individual predisposition test results, subjects should undergo genetic counselling, which in a research environment is not easily accessible. In addition, genetic information is often considered problematic because it reveals both individual and familial information. Also, mere knowledge of hereditary disease predisposition and individual test results can have psychological, social, or financial consequences. Even in clinical settings, where the issue is whether to perform predisposition genetic tests on children, several difficult ethical questions are raised, for example, whether, when, and by whom children should be informed about their genetic test results. Disclosing the results of the tests to parents may contravene the child’s right not to know the information (right not to know/right to an open future).

However, predisposition test results may also be beneficial clinically since they can promote targeted screening (if there are appropriate screening needs), help make informed decisions about carrier status (notably about the question of planning a pregnancy) and help people take control of their health. They can also provide a sense of relief from uncertainty about whether hereditary risks are present, as well as end the need for intensive screening for those without a familial mutation. Tests results can help people prepare psychologically and practically for the future; however, they may also raise uncertainties. In short, the legitimacy and acceptability of predisposition testing is dependent on the context and the population involved.

In the clinical setting, the principal justification for the use of predisposition tests in pediatrics is that testing is in the “best interest” of the child. If the test reveals the presence of a deleterious mutation, and there are treatments or effective preventive measures which can be initiated during childhood, this could be clearly beneficial to the child. For example, among families considered at-risk due to family history or prior positive test results in affected adult relatives, predisposition genetic testing has been used to identify children carrying a mutation that makes them susceptible to a particular type of colon cancer, familial adenomatous polyposis. In this case, the use of predisposition genetic tests is considered legitimate because the cancer may develop before the child reaches the age of majority and also because identification allows for early interventions that reduce morbidity and mortality, such as periodic monitoring and, if the disease develops, earlier treatment. It also stops the monitoring of those not at risk.

More recently, certain national organizations have claimed that it may be legitimate at times to use predisposition testing in the broader context of pediatric research. For example, the American Academy of Pediatrics’ guidelines on ethical issues in genetic testing involving children (published in 2001 and reaffirmed in 2004) mention that, while it is necessary to limit the use of genetic tests for late-onset diseases among children, research in this domain should be encouraged. Also, the Bioethics Advisory Committee of Singapore has suggested that

www.humgen.org/gedit
Permission to reproduce granted if the source is correctly identified. ISBN 1718-9314
genetic tests (without specific reference to genetic predisposition tests) can be carried out on vulnerable populations in a research context when the research is sufficiently important and when it cannot be done without the vulnerable population.

With this in mind, we will briefly set out the context in which predisposition testing in pediatric research is useful (I). Then, we will examine the ethical and legal norms concerning the use of these predisposition tests which limit to pediatric research (II). Throughout, we will review whether it is legitimate, according to current normative frameworks, to use predisposition tests in pediatric research and, if so, under which conditions. Our analysis focuses on normative texts related to human genetics adopted since 1995, 2) be they international, European, Canadian or American, and 3) specifically address the use of predictive tests in research, or, more generally, genetic research involving children. To conclude, we present our key findings as well as our position on the use of genetic predisposition tests in pediatric research.

I. Context

With respect to children, a fundamental principle in law and ethics is the consideration of the “best interests” of the child; this principle should guide decision-making about the child’s care. In pediatric research, this principle is reflected, on one hand, in the duty of special protection for children, while recognizing their specific vulnerability. For example, their autonomy—i.e. their capacity to make decisions and to protect their own interests—is not completely developed and their ability to comprehend important aspects of research will vary based on their stage of development. On the other hand, it has also been recognized that acting in the best interests of the child means not excluding them from research. Provided that the potential risks and benefits are balanced, it is generally desirable that research be carried out:

Research directed at childhood and early precursors of adult disease relies on studies occurring during childhood, and as genetic contributors to common complex diseases are identified, a broader range of conditions will be studied. In addition, study of genetic variation within families is an important methodological approach in genetic research. As a result, children are important participants in genetic research.

Today, pediatric research, including genetic research, is considered essential and beneficial for improving the health and well-being of children. It is useful to examine the normative texts regarding the use of predisposition genetic testing in research and the normative rules governing research participation of children.

II. Normative Frameworks

Is it legitimate to use predisposition tests in pediatric research? If so, in what context? What conditions must be met? Current normative documents do not explicitly focus on the topic of predisposition testing in children. Thus, in the absence of specific research guidelines, it is important to determine (1) whether the use of predisposition genetic testing in research is generally permissible; and then (2) if there are any special considerations regarding pediatric genetic research that may be applicable to predisposition tests.

1) Predisposition Genetic Testing in Research

Few international or national normative instruments specifically address the issue of using predisposition tests in research, with the exception of: the 1997 Convention on Human Rights and Biomedicine by the Council of Europe, Testing for Genetic Predisposition to Adult Onset Disease guidelines by the International Federation of Gynecology and Obstetrics (FIGO), and the Ethical Issues With Genetic Testing in Pediatrics by the American Academy of Pediatrics.

Under certain circumstances and conditions, the Convention on Human Rights and Biomedicine legitimizes the use of predisposition tests (the Convention uses the expression “predictive genetic test”) in medical research:

Tests which are predictive of genetic diseases or which serve either to identify the subject as a
carrier of a gene responsible for a disease or to detect a genetic predisposition or susceptibility to a disease may be performed only for health purposes or for scientific research linked to health purposes, and subject to appropriate genetic counselling.30

Specifically, according to the explanatory report to the Convention, it is necessary that the research pursue one of the two following goals: develop medical treatment or increase the ability to prevent diseases31. However, it is also mentioned that when predisposition tests seek to detect late-onset serious illnesses for which there is no treatment, then the use of these tests must be limited, even in a research context, to exceptional cases. "Exceptional cases" are not defined by either the Convention or the related report and these texts do not contain any additional guidance which might justify the exceptional usage of predisposition tests for research32. The reason for this limitation on the use of predisposition tests is that they risk violating the principles of free participation and of respect for privacy33. Generally, the Convention specifies that genetic tests can occur only after the individual in question has given his/her consent and after there has been appropriate genetic counselling34. However, the Convention does not specify whether appropriate genetic counselling is applicable in the clinical or research context, or both. Nevertheless, genetic counselling is likely more accessible in a clinical setting35.

The FIGO guidelines provide commentary about the use of certain predisposition tests in research. The guidelines emphasize that no susceptibility test for genetic disease should be done or proposed in the absence of informed consent36. Also, the recommendations acknowledge that obtaining informed consent for predisposition testing is different because of the complex gene-gene and gene-environment interactions that influence the manifestation of the given disease37. However, they do not provide guidance on this issue. Again, pre- and post-test genetic counselling is recommended38. But, as noted in the Convention, this recommendation is primarily applicable for predisposition tests occurring in a clinical setting. FIGO also affirms that the "[c]onfidentiality of the testing and the results is critical"39. FIGO recommends that researchers indicate to participants that there is the possibility of specifying if they would like to know the results of their genetic predisposition40. Yet, in many research environments, the reliability and predictive value of genetic tests are often unknown or unclear and still under development. Nevertheless, FIGO guidelines state that participants “should have the opportunity to designate whether or not genetically related family members should have access to the information if they do so desire and if the information could significantly influence their health care41.

The guidelines of the American Academy of Pediatrics on the use of genetic testing in children stipulate the need to limit the use of genetic tests for late-onset diseases during childhood, yet uphold the need for research in this area42.

Finally, several other normative texts have provided guidelines to frame the use of genetic tests, however, they do not specifically address predisposition genetic tests in research. These more general guidelines will not be discussed in this paper.

2) Pediatric Genetic Research

In pediatric research, the conditions are strict. Research involving children may be undertaken only if 1) the research in question could not take place on an adult population43, 2) the research is being undertaken in the best interests of the child (i.e. likelihood of direct benefit to the child) or, in exceptional cases, for the best interests of the group for which the child is a part44, and 3) the legal representative gives free and informed consent for the minor’s participation in the research project in question45. Also, in cases where a research project does not directly benefit the child, the research may not expose the child to more than minimal risk46. However, it is also controversial whether genetic testing presents minimal risk47. Furthermore, the majority of normative texts with articles on the subject of genetic research and minors recognize that, when a
The use of predisposition tests in pediatric research is complex because it rarely has a short-term effect on the health of the child. It can be useful and beneficial, in the long-term, for the health of the pediatric population as a whole. However, is this in the best interests of the child?

Based on our analysis of normative texts, it seems that specific protection measures framing the use of predisposition genetic tests in pediatric research are extremely limited. In fact, although there are provisions on the use of predisposition tests in research, they seem aimed principally at research carried out on adults. The guidelines regarding adult research are not sufficient to handle the complexities of children’s rights to confidentiality, the right not to know and the right to choose. The need for specific norms that protect the rights and interests of children in research has been long recognized. Moreover, the use of predisposition tests in minors raises specific issues. Consequently, it seems important to develop norms for the use of predisposition tests in pediatric research, particularly regarding questions about the best interests of the child and assent issues.

Regarding assent, the Convention on the Rights of the Child states that adults must involve children in decisions that concern them. Though the importance of including minors in the research decision process (assent) is recognized, there is a lack of uniformity as to how this requirement will be satisfied. In this regard, we suggest that the information document and assent process be adapted to the child’s language and comprehension level and be separate from the documents and consent process applicable to the parents. Second, considering the amount and the complexity of the information provided, the requirement to protect confidentiality may be challenging to balance against the rights of the other family members. Generally, third party access to genetic information is permitted only when the individual consents to this access. Also, it is important to respect the participant’s right not to be informed.

Conclusion

The use of predisposition tests in pediatric research is complex because it rarely has a short-term effect on the health of the child. It can be useful and beneficial, in the long-term, for the health of the pediatric population as a whole. However, is this in the best interests of the child?

Based on our analysis of normative texts, it seems that specific protection measures framing the use of predisposition genetic tests in pediatric research are extremely limited. In fact, although there are provisions on the use of predisposition tests in research, they seem aimed principally at research carried out on adults. The guidelines regarding adult research are not sufficient to handle the complexities of children’s rights to confidentiality, the right not to know and the right to choose. The need for specific norms that protect the rights and interests of children in research has been long recognized. Moreover, the use of predisposition tests in minors raises specific issues. Consequently, it seems important to develop norms for the use of predisposition tests in pediatric research, particularly regarding questions about the best interests of the child and assent issues.

Regarding assent, the Convention on the Rights of the Child states that adults must involve children in decisions that concern them. Though the importance of including minors in the research decision process (assent) is recognized, there is a lack of uniformity as to how this requirement will be satisfied. In this regard, we suggest that the information document and assent process be adapted to the child’s language and comprehension level and be separate from the documents and consent process applicable to the parents. Second, considering the amount and the complexity of the information provided, the requirement to protect confidentiality may be challenging to balance against the rights of the other family members. Generally, third party access to genetic information is permitted only when the individual consents to this access. Also, it is important to respect the participant’s right not to be informed.

Conclusion

The use of predisposition tests in pediatric research is complex because it rarely has a short-term effect on the health of the child. It can be useful and beneficial, in the long-term, for the health of the pediatric population as a whole. However, is this in the best interests of the child?

Based on our analysis of normative texts, it seems that specific protection measures framing the use of predisposition genetic tests in pediatric research are extremely limited. In fact, although there are provisions on the use of predisposition tests in research, they seem aimed principally at research carried out on adults. The guidelines regarding adult research are not sufficient to handle the complexities of children’s rights to confidentiality, the right not to know and the right to choose. The need for specific norms that protect the rights and interests of children in research has been long recognized. Moreover, the use of predisposition tests in minors raises specific issues. Consequently, it seems important to develop norms for the use of predisposition tests in pediatric research, particularly regarding questions about the best interests of the child and assent issues.

Regarding assent, the Convention on the Rights of the Child states that adults must involve children in decisions that concern them. Though the importance of including minors in the research decision process (assent) is recognized, there is a lack of uniformity as to how this requirement will be satisfied. In this regard, we suggest that the information document and assent process be adapted to the child’s language and comprehension level and be separate from the documents and consent process applicable to the parents. Second, considering the amount and the complexity of the information provided, the requirement to protect confidentiality may be challenging to balance against the rights of the other family members. Generally, third party access to genetic information is permitted only when the individual consents to this access. Also, it is important to respect the participant’s right not to be informed.

Conclusion

The use of predisposition tests in pediatric research is complex because it rarely has a short-term effect on the health of the child. It can be useful and beneficial, in the long-term, for the health of the pediatric population as a whole. However, is this in the best interests of the child?

Based on our analysis of normative texts, it seems that specific protection measures framing the use of predisposition genetic tests in pediatric research are extremely limited. In fact, although there are provisions on the use of predisposition tests in research, they seem aimed principally at research carried out on adults. The guidelines regarding adult research are not sufficient to handle the complexities of children’s rights to confidentiality, the right not to know and the right to choose. The need for specific norms that protect the rights and interests of children in research has been long recognized. Moreover, the use of predisposition tests in minors raises specific issues. Consequently, it seems important to develop norms for the use of predisposition tests in pediatric research, particularly regarding questions about the best interests of the child and assent issues.

Regarding assent, the Convention on the Rights of the Child states that adults must involve children in decisions that concern them. Though the importance of including minors in the research decision process (assent) is recognized, there is a lack of uniformity as to how this requirement will be satisfied. In this regard, we suggest that the information document and assent process be adapted to the child’s language and comprehension level and be separate from the documents and consent process applicable to the parents. Second, considering the amount and the complexity of the information provided, the requirement to protect confidentiality may be challenging to balance against the rights of the other family members. Generally, third party access to genetic information is permitted only when the individual consents to this access. Also, it is important to respect the participant’s right not to be informed.

Conclusion

The use of predisposition tests in pediatric research is complex because it rarely has a short-term effect on the health of the child. It can be useful and beneficial, in the long-term, for the health of the pediatric population as a whole. However, is this in the best interests of the child?

Based on our analysis of normative texts, it seems that specific protection measures framing the use of predisposition genetic tests in pediatric research are extremely limited. In fact, although there are provisions on the use of predisposition tests in research, they seem aimed principally at research carried out on adults. The guidelines regarding adult research are not sufficient to handle the complexities of children’s rights to confidentiality, the right not to know and the right to choose. The need for specific norms that protect the rights and interests of children in research has been long recognized. Moreover, the use of predisposition tests in minors raises specific issues. Consequently, it seems important to develop norms for the use of predisposition tests in pediatric research, particularly regarding questions about the best interests of the child and assent issues.

Regarding assent, the Convention on the Rights of the Child states that adults must involve children in decisions that concern them. Though the importance of including minors in the research decision process (assent) is recognized, there is a lack of uniformity as to how this requirement will be satisfied. In this regard, we suggest that the information document and assent process be adapted to the child’s language and comprehension level and be separate from the documents and consent process applicable to the parents. Second, considering the amount and the complexity of the information provided, the requirement to protect confidentiality may be challenging to balance against the rights of the other family members. Generally, third party access to genetic information is permitted only when the individual consents to this access. Also, it is important to respect the participant’s right not to be informed.
of the information specific to genetic research, it will be important to take into consideration children’s developmental and cognitive levels if research assent is to be expected. Third, there should be periodic review of assent, especially for longitudinal research, as the meaning of particular genetic information is likely to change with time. Overall, we believe that it is important to promote the active participation of young people in research: in others words, as partners in its different stages.

It is important that all pediatric research be guided by the best interests of the child, in conformity with the 1989 Convention on the Rights of the Child. The duty to act in the best interests of the child requires us to ensure that each child be protected against research risks while also requiring that our actions, or non-actions, do not cause any harm to this population. Pediatric predisposition genetic testing research will probably not provide short-term medical benefits for the health of the child and there are potential psychosocial risks related to the communication of predisposition test results. These issues are noteworthy. We believe that to conform to the standards of the best interests of the child, specific rules are required for the confidentiality of predisposition test results in pediatric research. Moreover, if there are no treatment or effective preventive measures that can benefit the actual or future health of the child, there should be no disclosure of research test results (either to the child or to the parents) for the following reasons: it would not be in the best interests of the child, it would contravene the child’s rights to confidentiality and privacy, and it can have psychosocial consequences. However, if and when the predisposition test provides information that can be clinically validated, i.e. when it can be used to improve present and future health, and when the conditions currently governing the use of predisposition genetic tests in minors in the clinical context are met, then the research results should be communicated. In addition, we advocate the use of genetic counselling, prior to the communication of genetic information, and a well developed process of assent.

At the beginning of the 1990s, the clinical use of predisposition genetic tests in the pediatric population received relatively little attention in the literature and in ethical and professional norms. Today that situation has changed. While the imperative for pediatric genetic research is there, none of the normative texts examined explicitly address the question of the use of predisposition tests in pediatric research. We believe that there is a need for the development of guidelines specifically geared to the rights and interests of children as participants in genetic research.


In fact, it is generally recognized that the issues raised by the use of predictive tests in minors are different than those raised by the use of predictive tests in adults. For more on this topic, see particularly R.E. DUNCAN, M.B. DELATYCKI, “Predictive Genetic Testing in Young People for Adult-Onset Conditions: Where is the Empirical Evidence?”, (2006) 69 Clin Genet, 9


The Convention is applicable in the countries that have ratified it. Although this instrument has been adopted by the Council of Europe’s Parliamentary Assembly (which makes it, at first view, seem to have regional scope), it is necessary to note that this instrument is open to the signatures and ratification of non-member countries of the Council of Europe (Council of Europe, Convention on Human Rights and Biomedicine, op. cit. note 36, art 33 al. 1 and art 34 al. 1); this could give it an international reach (for the countries which committed to it through ratification because its effectiveness depends on states’ decisions to ratify or not to ratify it)

Indeed, predictive tests cannot be carried out except for medical reasons or for medical research (Council of Europe, Convention on Human Rights and Biomedicine, art. 12), unless a national law does not permit them for (2006) vol. 4, no. 2, GenEdit, 1-9
the necessary reasons, in a democratic society, of public safety, to prevent penal infractions, or to protect public health or the rights and freedoms of others. (Council of Europe, Convention on Human Rights and Biomedicine, op. cit. 26, art. 26.1)


52 Nevertheless, it is interesting to note that the “Working Party on Human Genetics,” a working group affiliated with the Council of Europe’s Steering Committee on Bioethics, published a working document in which it specified that predictive genetic tests could be used on people, among others, for scientific research ends if the research is related to health. (Working Party on Human Genetics, (CDRH-Council of Europe), Working Document on the Application of Genetics for Health Purposes, Strasbourg, February 7, 2003, art. 15 [online] http://www.coe.int/T/D/Legal_affairs/Legal_co-operation/Bioethics/Activities/Human_genetics/IF%282003%2923_E_Wkg_doc_genetics.pdf)


57 id.

58 Id., Recommendation 3

59 Id., Recommendation 5

60 Id., Recommendation 5


62 United Nations Educational, Scientific and Cultural Organization (UNESCO), Universal Declaration on Bioethics and Human Rights, Paris, October 19, 2005, art. 7(b); United Nations Educational, Scientific and Cultural Organization (UNESCO), Declaration on the Human Genome and Human Rights, Paris, November 11, 1997, art. 5(c); Council for International Organizations of Medical Sciences (CIOMS), International Ethical Guidelines for Biomedical Research Involving Human Subjects, op. cit. note 7, guidelines 13 and 14; Council of Europe, Convention on Human Rights and Biomedicine, op. cit. note 26, art. 17(1)(ii); Council of Europe, Additional Protocol to the Convention on Human Rights and Biomedicine, concerning biomedical research, Strasbourg 2005, art. 15(1)(ii); Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, Social Sciences and Humanities Research Council of Canada, Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans, op. cit. note 43, article 2.5(c)


64 Acquiring autonomy is a process of development; it is acquired alongside childhood’s gradual development of cognitive capacities and moral reasoning. (D. AVARD, B. M. KNOPPERS, “Screening and Children: Policy Issues for the New Millennium”, loc. cit. note 21, 48)


66 United Nations Educational, Scientific and Cultural Organization (UNESCO), Universal Declaration on Bioethics and Human Rights, op. cit. note 43, art. 7(b); United Nations Educational, Scientific and Cultural Organization (UNESCO), Declaration on the Human Genome and Human Rights, op. cit. note 43, art. 5(b); United Nations Educational, Scientific and Cultural Organization (UNESCO), Universal Declaration on Bioethics and Human Rights, op. cit. note 43, art. 7(a); Council for International Organizations of Medical Sciences (CIOMS), International Ethical Guidelines for Biomedical Research Involving Human Subjects, op. cit. note 7, guidelines 13 and 14; Council of Europe, Convention on Human Rights and Biomedicine, op. cit. note 26, art. 17(1)(ii); Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, Social Sciences and Humanities Research Council of Canada, Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans, op. cit. note 43, art. 15(1)(i), 15(1)(v), 15(1)(v); European Commission, 25 Recommendations on the ethical, legal and social implications of genetic testing, op. cit. note 44, recommendation 25(b)

67 A.F. PATENAude, Genetic Testing for Cancer: Psychological Approaches for Helping Patients and Families, op. cit. note 2, p. 118-123

54 Most of the normative texts framing genetic research assert the right to access general research results. (Council of Europe, Additional Protocol to the Convention on Human Rights and Biomedicine, concerning Biomedical Research, op. cit. note 43, art. 28(2); Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, Social Sciences and Humanities Research Council of Canada, Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans, Ottawa, Minister of Supply and Services Canada, op. cit. note 43, article 8.1; Network of Applied Genetic Medicine (RMGA), Statement of Principles: Human Genome Research – version 2000, op. cit. note 53, principle II(4))


56 Council of Europe, Protocol to the Convention on Human Rights and Biomedicine, on Biomedical Research, op. cit. note 43, art. 27, Network Of Applied Genetic Medicine (RMGA), Statement of Principles: Human Genome Research – version 2000, op. cit. note 53, principle II(4) and III(2)

57 NETWORK OF APPLIED GENETIC MEDICINE (RMGA), Statement of Principles: Human Genome Research – version 2000, op. cit. note 53, principle III al. 2. For example, it is stipulated that, in exceptional circumstances, a researcher can disclose genetic information to the members of a participant’s biological family, without the participant’s consent. Three conditions must be met for this to take place: 1) when non-disclosure is likely to involve serious and foreseeable damage to the biological family; 2) when members of the biological family are identifiable; and 3) when the risk of prejudice can be avoided through prevention or control by an approved scientific treatment. Also, it specifies that an evaluation of disclosure or non-disclosure of the genetic information to the participant’s biological family must take into account that the prejudice caused by the disclosure must not be greater than the prejudice caused by non-disclosure (RMGA, principle III)


59 For example, World Medical Association, Declaration of Helsinki, Edinburgh, October 2000, principle A8; Council of International Organizations Of Medical Sciences (CIOMS), International Ethical Guidelines for Biomedical Research Involving Human Subjects, op. cit. note 7, guideline 13. "States Parties shall assure to the child who is capable of forming his or her own views the right to express those views freely in all matters affecting the child, the views of the child being given due weight in accordance with the age and maturity of the child". United Nations (Office of the High Commissioner for Human Rights), Convention on the Rights of the Child, op. cit. note 19, art 12 al. 3

60 INVOLVE, A Guide to Actively Involving Young People in Research: For Researchers, Research Commissioners, and Managers, United Kingdom, September 2004


